Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks
نویسندگان
چکیده
One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal) provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs) which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions) in genome-scale metabolic network models. For this we combine two approaches, namely (i) the mapping of MCSs to EMs in a dual network, and (ii) a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine) by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth) than reported previously. The strength of the presented approach is that smallest intervention strategies can be quickly calculated and screened with neither network size nor the number of required interventions posing major challenges.
منابع مشابه
CASOP GS: Computing Intervention Strategies Targeted at Production Improvement in Genome-scale Metabolic Networks
Metabolic engineering aims to improve the production of desired biochemicals and proteins in organisms and therefore, plays a central role in Biotechnology. However, the design of overproducing strains is not straightforward due to the complexity of metabolic and regulatory networks. Thus, theoretical tools supporting the design of such strains have been developed. One particular method, CASOP,...
متن کاملParallel Out-of-Core Algorithm for Genome-Scale Enumeration of Metabolic Systemic Pathways
Systemic pathways-oriented approaches to analysis of metabolic networks are effective for small networks but are computationally infeasible for genome scale networks. Current computational approaches to this analysis are based on the mathematical principles of convex analysis. The enumeration of a complete set of “systemically independent” metabolic pathways is at the core of these approaches a...
متن کاملEColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model
Genome-scale metabolic modeling has become an invaluable tool to analyze properties and capabilities of metabolic networks and has been particularly successful for the model organism Escherichia coli. However, for several applications, smaller metabolic (core) models are needed. Using a recently introduced reduction algorithm and the latest E. coli genome-scale reconstruction iJO1366, we derive...
متن کاملCorrigendum: EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model
Genome-scale metabolic modeling has become an invaluable tool to analyze properties and capabilities of metabolic networks and has been particularly successful for the model organism Escherichia coli. However, for several applications, smaller metabolic (core) models are needed. Using a recently introduced reduction algorithm and the latest E. coli genome-scale reconstruction iJO1366, we derive...
متن کاملComplete enumeration of elementary flux modes through scalable demand-based subnetwork definition
MOTIVATION Elementary flux mode analysis (EFMA) decomposes complex metabolic network models into tractable biochemical pathways, which have been used for rational design and analysis of metabolic and regulatory networks. However, application of EFMA has often been limited to targeted or simplified metabolic network representations due to computational demands of the method. RESULTS Division o...
متن کامل